TY - JOUR
T1 - Risk stratification in patients with structurally normal hearts: Does fibrosis type matter?
AU - Gil, Katarzyna E
AU - Mikrut, Katarzyna
AU - Mazur, Jan
AU - Black, Ann Lowery
AU - Truong, Vien T
AU - Smart, Suzanne
AU - Zareba, Karolina M
AU - Advocate Cardiovascular Disease Faculty - Lutheran General, null
N1 - Gil KE, Mikrut K, Mazur J, et al. Risk stratification in patients with structurally normal hearts: Does fibrosis type matter?. PLoS One. 2023;18(12):e0295519. Published 2023 Dec 20. doi:10.1371/journal.pone.0295519
PY - 2023/12/20
Y1 - 2023/12/20
N2 - Objectives: The study sought to assess the prognostic significance of nonischemic myocardial fibrosis (MF) on cardiovascular magnetic resonance (CMR)-both macroscopic MF assessed by late gadolinium enhancement (LGE) and diffuse microscopic MF quantified by extracellular volume fraction (ECV)-in patients with structurally normal hearts. Background: The clinical relevance of tissue abnormalities identified by CMR in patients with structurally normal hearts remains unclear. Methods: Consecutive patients undergoing CMR were screened for inclusion to identify those with LGE imaging and structurally normal hearts. ECV was calculated in patients with available T1 mapping. The associations between myocardial fibrosis and the outcomes of all-cause mortality, new-onset heart failure [HF], and an arrhythmic outcome were evaluated. Results: In total 525 patients (mean age 43.1±14.2 years; 30.5% males) were included. Over a median follow-up of 5.8 years, 13 (2.5%) patients died and 18 (3.4%) developed new-onset HF. Nonischemic midwall /subepicardial LGE was present in 278 (52.9%) patients; isolated RV insertion fibrosis was present in 80 (15.2%) patients. In 276 patients with available T1 mapping, the mean ECV was 25.5 ± 4.4%. There was no significant association between LGE and all-cause mortality (HR: 1.36, CI: 0.42-4.42, p = 0.61), or new-onset HF (HR: 0.64, CI: 0.25-1.61, p = 0.34). ECV (per 1% increase) correlated with all-cause mortality (HR: 1.19, CI: 1.04-1.36, p = 0.009), but not with new-onset HF (HR: 0.97, CI: 0.86-1.10, p = 0.66). There was no significant association between arrhythmic outcomes and LGE (p = 0.60) or ECV (p = 0.49). In a multivariable model after adjusting for covariates, ECV remained significantly associated with all-cause mortality (HR per 1% increase in ECV: 1.26, CI: 1.06-1.50, p = 0.009). Conclusion: Nonischemic LGE in patients with structurally normal hearts is common and does not appear to be associated with adverse outcomes, whereas elevated ECV is associated with all-cause mortality and may be an important risk stratification tool.
AB - Objectives: The study sought to assess the prognostic significance of nonischemic myocardial fibrosis (MF) on cardiovascular magnetic resonance (CMR)-both macroscopic MF assessed by late gadolinium enhancement (LGE) and diffuse microscopic MF quantified by extracellular volume fraction (ECV)-in patients with structurally normal hearts. Background: The clinical relevance of tissue abnormalities identified by CMR in patients with structurally normal hearts remains unclear. Methods: Consecutive patients undergoing CMR were screened for inclusion to identify those with LGE imaging and structurally normal hearts. ECV was calculated in patients with available T1 mapping. The associations between myocardial fibrosis and the outcomes of all-cause mortality, new-onset heart failure [HF], and an arrhythmic outcome were evaluated. Results: In total 525 patients (mean age 43.1±14.2 years; 30.5% males) were included. Over a median follow-up of 5.8 years, 13 (2.5%) patients died and 18 (3.4%) developed new-onset HF. Nonischemic midwall /subepicardial LGE was present in 278 (52.9%) patients; isolated RV insertion fibrosis was present in 80 (15.2%) patients. In 276 patients with available T1 mapping, the mean ECV was 25.5 ± 4.4%. There was no significant association between LGE and all-cause mortality (HR: 1.36, CI: 0.42-4.42, p = 0.61), or new-onset HF (HR: 0.64, CI: 0.25-1.61, p = 0.34). ECV (per 1% increase) correlated with all-cause mortality (HR: 1.19, CI: 1.04-1.36, p = 0.009), but not with new-onset HF (HR: 0.97, CI: 0.86-1.10, p = 0.66). There was no significant association between arrhythmic outcomes and LGE (p = 0.60) or ECV (p = 0.49). In a multivariable model after adjusting for covariates, ECV remained significantly associated with all-cause mortality (HR per 1% increase in ECV: 1.26, CI: 1.06-1.50, p = 0.009). Conclusion: Nonischemic LGE in patients with structurally normal hearts is common and does not appear to be associated with adverse outcomes, whereas elevated ECV is associated with all-cause mortality and may be an important risk stratification tool.
KW - Myocardium
KW - Contrast Media
KW - Stroke Volume
KW - Magnetic Resonance Imaging
KW - Cardiomyopathies
KW - Fibrosis
KW - Heart Failure
KW - Risk Assessment
KW - Predictive Value of Tests
UR - https://institutionalrepository.aah.org/advocategme/476
UR - https://libkey.io/libraries/1712/10.1371/journal.pone.0295519
U2 - 10.1371/journal.pone.0295519
DO - 10.1371/journal.pone.0295519
M3 - Article
C2 - 38117807
JO - PLoS ONE
JF - PLoS ONE
ER -